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An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet
generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge
continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as
well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving
fluid. A diffuse interface model on a static grid, based on the Volume of Fluid method, is used to describe motion of the phase
boundaries, providing efficient handling of topology changes. The contact line motion at the solid boundaries is furthermore taken
into account using a dynamic model including pinning effects, in order to accurately describe droplet motion on solid surfaces.

Index Terms—Electrohydrodynamics, electromagnetic forces, fluid flow control, finite volume methods

I. INTRODUCTION

Dynamic droplet processes under the influence of strong
electric fields play an important role in many technical applica-
tions. The perhaps best known example is electrospraying [1],
[2]. Electric fields can furthermore be used for controlled
droplet generation. In electrically driven drop-on-demand gen-
erators, reliable injection of liquid samples into a test chamber
even under extreme atmospheric conditions is achieved by
applying strong electric pulses on the liquid [3].

The dynamics of liquid droplets in such a generator defines
an elecrohydrodynamically coupled and strongly nonlinear
problem, which can be described accurately only by means of
numerical simulation. Several aspects should be taken into ac-
count in the simulation of such processes. Firstly, the numerical
scheme must be able to handle the sudden event associated with
a modification of the phase boundary topology which occurs
at an extremely thin liquid thread. Using an explicit interface
tracking technique with sharp geometry boundaries in this case
becomes numerically extremely cumbersome [4]. Secondly,
liquid droplets produced by breakup or detachment may carry
a net electric charge [5]. This effect is due to the finite charge
relaxation time of conductive liquids. The numerical model
must be able to describe such charging phenomena accurately
since the behavior of liquid droplets under various experimental
conditions depends substantially from their electric charge.
Thirdly, the charge relaxation time, depending on the fluid
conductivity, and the fluid dynamical time scales may be
comparable. In this case, the electric field solution depends
not only on the instantaneous droplet shape but also on the
convection flow associated with droplet motion [6].

In this work, we introduce a conduction-convection model
for the simulation of droplet dripping process under the in-

fluence of low frequency electric fields, involving dynamic
charging effects. This model is applied in the simulation of
an electrically driven droplet generator. First simulation results
for acetone droplet generation show an excellent agreement
with the experimental data.

II. NUMERICAL MODEL

A. Interface representation

In order to efficiently account for topology changes in the
phase boundary, the interface between fluids is represented us-
ing the Volume of Fluid (VoF) method [7]. In the VoF method,
the material properties in the fluid mixture are calculated using
the volume fraction α of either liquid in each cell of the
computational grid. The volume fraction field defines material
properties of the liquid mixture by weighted averaging, e.g.
ρ = αρliq + (1 − α)ρgas. The resulting diffuse interface is
passively transported at each time step by the velocity field of
the fluid mixture and implicitly tracks topology changes.

B. Fluid flow problem

The fluid flows considered in this work are described by the
incompressible Navier-Stokes equations,
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where ρ is the fluid density, µ is the dynamic viscosity, ~u the
velocity, p the pressure. ~fe and ~fs are, respectively, the electric
force density and the surface tension force density acting at
the interface between different fluid phases.



The surface tension contributions at the contact line where
the two fluid phases meet a solid wall are described in terms
of an apparent contact angle, θ. The model used for describing
its dynamics is based on the Kistler correlation [8]
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In (3), γ is the surface tension and ucl the signed velocity
of the contact line. It is considered positive when the contact
line is advancing, and negative otherwise. The two angles
θadv/θrec denote the limiting advancing or receding contact
angle, respectively.

C. Electric field problem

The model is based on the solution of the charge conserva-
tion equation

∂ρe
∂t

+∇ · ~J = 0 , (5)

where ρe is the free electric charge density in the fluids, and
~J the current density. For incompressible conductive fluids,
this density consists of a conduction and convection term, ~J =
ρe~u−κ∇Φ, where Φ is the electric potential and κ the electrical
conductivity. The electric potential is, furthermore, related to
the free charge density by Gauss’ law:

∇ · ε∇Φ = −ρe . (6)

Equations (5) and (6) define the electric field problem, includ-
ing conductive, capacitive and convective currents in the fluids.

For the numerical solution of (5) and (6), electric properties
at the diffuse interface between fluids is defined by harmonic
averages of the dielectric permittivity and electric conductivity,
respectively, as
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The choice of harmonic averaging, leads to faster numerical
convergence of the discrete boundary value problems (5) and
(6), in the case of fully charged interfaces, where the electric
field is essentially normal to the phase boundary [9].

III. RESULTS

The model is illustrated through the example of an elec-
trically driven droplet generator, shown in Fig. 1. A metallic
capillary, surrounded by electrodes, slowly introduces liquid in
a pressure chamber, producing a pendant droplet. As the droplet
reaches a specified size, the electrode voltage is switched on,
producing an electric force accelerating the droplet down-
wards, causing it to eventually detach. A comparison between
experimental and simulated axisymmetric dynamics of the
detachment process for an acetone droplet, (cf. Fig. 2), shows
excellent agreement. Additional results on the detachment
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Fig. 1. (a) Model of the droplet generator including capillary, electrodes
and test chamber (cf. [3]). (b) Schematic view and main parameters of the
simulation model.
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Fig. 2. Comparison between simulation and experiment for an acetone droplet
shape in the generator at different time instants during the detachment process.

dynamics of test liquids with lower conductivity and effects
of the applied voltage on the detachment time and oscillations
of free falling droplets will be included in the full paper.
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